DC Power Relays (200-A Models) G9EC-1

DC Power Relays Capable of Interrupting High-voltage, High-current Loads

- A compact relay ($98 \times 44 \times 86.7 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$) capable of switching 400-V 200-A DC loads. (Capable of interrupting $1,000 \mathrm{~A}$ at 400 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt high-capacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.
- Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover is also available for industrial applications.

- UL/CSA standard UL508 approved.

Note: Refer to "Precautions", located on page 7.

Model Number Structure

Model Number Legend

1. Number of Poles

1: 1 pole
2. Contact Form

Blank:SPST-NO
3. Coil Terminals

B: M3.5 screw terminals (standard)
Blank: Lead wire output
4. Special Functions

Ordering Information

List of Models

Models	Terminals		Contact form	Coil rated voltage	Model
	Coil terminals	Contact terminals			
Switching/current conduction models	Screw terminals	Screw terminals	SPST-NO	$\begin{aligned} & 12 \text { VDC } \\ & 24 \text { VDC } \\ & 48 \text { VDC } \\ & 60 \text { VDC } \\ & 100 \text { VDC } \end{aligned}$	G9EC-1-B
	Lead wire				G9EC-1

Note: 1. Relays come with two M8 nuts for the main terminals (contacts).
2. Relays with coil terminals and screw terminals come with two M3.5 screws.

Specifications

Ratings

Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Maximum voltage (See note 3.)	Power consumption
12 VDC	938 mA	12.8Ω	75% max. of rated voltage	8% min. of rated voltage	110% of rated voltage	Approx. 11 W
24 VDC	469 mA	51.2Ω				
48 VDC	234 mA	204.8 ת				
60 VDC	188 mA	320.0Ω				
100 VDC	113 mA	888.9Ω				

Note: 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil for period of 10 minutes at an ambient temperature of $23^{\circ} \mathrm{C}$. It does not apply to continuous operation.

Contacts

Item	Resistive Ioad
	G9EC-1(-B)
Rated load	200 A at 400 VDC
Rated carry current	200 A
Maximum switching voltage	400 V
Maximum switching current	200 A

Characteristics

Item		G9EC-1(-B)
Contact resistance (See note 2.)		$30 \mathrm{~m} \Omega$ max. (0.2 m Ω typical)
Contact voltage drop		0.1 V max. (for a carry current of 200 A)
Operate time		50 ms max.
Release time		30 ms max .
Insulation resistance (See note 3.)	Between coil and contacts	$1,000 \mathrm{M} \Omega \mathrm{min}$.
	Between contacts of the same polarity	1,000 M 2 min .
Dielectric strength	Between coil and contacts	2,500 VAC, 1 min
	Between contacts of the same polarity	2,500 VAC, 1 min
Impulse withstand voltage (See note 4.)		4,500 V
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz} \mathrm{0.75-mm} \mathrm{single} \mathrm{amplitude} \mathrm{(Acceleration:} 2.94$ to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
	Malfunction	10 to 55 to $10 \mathrm{~Hz} 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
Shock resistance	Destruction	$490 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$196 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical endurance (See note 5.)		200,000 operations min.
Electrical endurance (resistive load) (See note 6.)		400 VDC, 200 A, 3,000 operations min.
Short-time carry current		300 A (15 min)
Maximum interruption current		1,000 A at 400 VDC (10 times)
Overload interruption		700 A at 400 VDC (40 times min.)
Reverse polarity interruption		-200 A at 200 VDC (1,000 times min.)
Ambient operating temperature		-40 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight		Approx. 560 g

Note: 1. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
3. The insulation resistance was measured with a $500-\mathrm{VDC}$ megohmmeter.
4. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$).
5. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.
6. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Models with Screw Terminals

G9EC-1-B

Models with Lead Wires

G9EC-1

